March 30, 2016

For the function f(x,y) subject to the constraint g(x,y)=c, the Lagrange equations are $f_x=\lambda g_x$, $f_y=\lambda g_y$, and g(x,y)=c.

1. Set up the optimization and constraint functions for the following problem.

(Your answer should look like this: Minimize ______ subject to ______.)

A rectangular building with a square front is to be constructed of materials that costs 16 dollars per ft² for the flat roof, 19 dollars per ft² for the sides and the back, and 15 dollars per ft² for the glass front. We will ignore the bottom of the building. If the volume of the building is 5,600 ft³, what dimensions will

minimize the cost of materials?

Cost = $10(xy) + 19(2xy + x^2) + 15(x^2)$ $V = 5000 = x^2y$ Minimize $54xy + 34x^2$ subject to $x^2y = 5600$

2. Find the point (x, y) which maximizes $8x^{3/2}y^{1/2}$ subject to x + y = 208.

